A New Source of Electricity
Simple Science
A New Source of Electricity
How Electricity is obtained on a Large Scale:
It came to most of us as a surprise that an electric current has magnetic properties and transforms a coil into a veritable magnet. Perhaps it will not surprise us now to learn that a magnet in motion has electric properties and is, in fact, able to produce a current within a wire. This can be proved as follows: -
Attach a closely wound coil to a sensitive galvanometer; naturally there is no deflection of the galvanometer needle, because there is no current in the wire. Now thrust a magnet into the coil. Immediately there is a deflection of the needle, which indicates that a current is flowing through the circuit. If the magnet is allowed to remain at rest within the coil, the needle returns to its zero position, showing that the current has ceased. Now let the magnet be withdrawn from the coil; the needle is deflected as before, but the deflection is in the opposite direction, showing that a current exists, but that it flows in the opposite direction. We learn, therefore, that a current may be induced in a coil by moving a magnet back and forth within the coil, but that a magnet at rest within the coil has no such influence.
An electric current transforms a coil into a magnet. A magnet in motion induces electricity within a coil; that is, causes a current to flow through the coil.
A magnet possesses lines of force, and as the magnet moves toward the coil it carries lines of force with it, and the coil is cut, so to speak, by these lines of force. As the magnet recedes from the coil, it carries lines of force away with it, this time reducing the number of the lines which cut the coil.
FIG. - The motion of a magnet within a coil of wire produces a current of electricity.