simple science

2018 Tarot Card Reading. accurate fortune teller. Free ..

Simple Science

71. The Source of Water
Water:
In the beginning, the earth was stored with water just as it was with metal, rock, etc. Some of the water gradually took the form of rivers, lakes, streams, and wells, as now, and it is this original supply of water which furnishes us all that we have to-day. We quarry to obtain stone and marble for building, and we fashion the earth's treasures into forms of our own, but we cannot create these things. We bore into the ground and drill wells in order to obtain water from hidden sources; we utilize rapidly flowing streams to drive the wheels of commerce, but the total amount of water remains practically unchanged.

The water which flows on the earth is constantly changing its form; the heat of the sun causes it to evaporate, or to become vapor, and to mingle with the atmosphere. In time, the vapor cools, condenses, and falls as snow or rain; the water which is thus returned to the earth feeds our rivers, lakes, springs, and wells, and these in turn supply water to man. When water falls upon a field, it soaks into the ground, or collects in puddles which slowly evaporate, or it runs off and drains into small streams or into rivers. That which soaks into the ground is the most valuable because it remains on the earth longest and is the purest.

Water which soaks into the ground moves slowly downward and after a longer or shorter journey, meets with a non-porous layer of rock through which it cannot pass, and which effectually hinders its downward passage. In such regions, there is an accumulation of water, and a well dug there would have an abundant supply of water. The non-porous layer is rarely level, and hence the water whose vertical path is obstructed does not "back up" on the soil, but flows down hill parallel with the obstructing non-porous layer, and in some distant region makes an outlet for itself, forming a spring. The streams originating in the springs flow through the land and eventually join larger streams or rivers; from the surface of streams and rivers evaporation occurs, the water once more becomes vapor and passes into the atmosphere, where it is condensed and again falls to the earth.

Water which has filtered through many feet of earth is far purer and safer than that which fell directly into the rivers, or which ran off from the land and joined the surface streams without passing through the soil.

FIG. - How springs are formed. A, porous layer; B, non-porous layer; C, spring.
72. The Composition of Water 1
Water:
Water was long thought to be a simple substance, but toward the end of the eighteenth century it was found to consist of two quite different substances, oxygen (O) and hydrogen (H.)

If we send an electric current through water (acidulated to make it a good conductor), as shown in Figure, we see bubbles of gas rising from the end of the wire by which the current enters the water, and other bubbles of gas rising from the end of the wire by which the current leaves the water. These gases have evidently come from the water and are the substances of which it is composed, because the water begins to disappear as the gases are formed. If we place over each end of the wire an inverted jar filled with water, the gases are easily collected. The first thing we notice is that there is always twice as much of one gas as of the other; that is, water is composed of two substances, one of which is always present in twice as large quantities as the other.

FIG. - The decomposition of water.
73. The Composition of Water 2
Water:
On testing the gases into which water is broken up by an electric current, we find them to be quite different. One proves to be oxygen, a substance with which we are already familiar. The other gas, hydrogen, is new to us and is interesting as being the lightest known substance, being even "lighter than a feather."

An important fact about hydrogen is that in burning it gives as much heat as five times its weight of coal. Its flame is blue and almost invisible by daylight, but intensely hot. If fine platinum wire is placed in an ordinary gas flame, it does not melt, but if placed in a flame of burning hydrogen, it melts very quickly.
74. How to prepare Hydrogen
Water:
There are many different methods of preparing hydrogen, but the easiest laboratory method is to pour sulphuric acid, or hydrochloric acid, on zinc shavings and to collect in a bottle the gas which is given off. This gas proves to be colorless, tasteless, and odorless.
75. The Instability of the Air
Air:
We are usually not conscious of the air around us, but sometimes we realize that the air is heavy, while at other times we feel the bracing effect of the atmosphere. We live in an ocean of air as truly as fish inhabit an ocean of water. If you have ever been at the seashore you know that the ocean is never still for a second; sometimes the waves surge back and forth in angry fury, at other times the waves glide gently in to the shore and the surface is as smooth as glass; but we know that there is perpetual motion of the water even when the ocean is in its gentlest moods. Generally our atmosphere is quiet, and we are utterly unconscious of it; at other times we are painfully aware of it, because of its furious winds. Then again we are oppressed by it because of the vast quantity of vapor which it holds in the form of fog, or mist. The atmosphere around us is as restless and varying as is the water of the sea. The air at the top of a high tower is very different from the air at the base of the tower. Not only does the atmosphere vary greatly at different altitudes, but it varies at the same place from time to time, at one period being heavy and raw, at another being fresh and invigorating.

Winds, temperature, and humidity all have a share in determining atmospheric conditions, and no one of these plays a small part.
76. The Character of the Air
Air:
The atmosphere which envelops us at all times extends more than fifty miles above us, its height being far greater than the greatest depths of the sea. This atmosphere varies from place to place; at the sea level it is heavy, on the mountain top less heavy, and far above the earth it is so light that it does not contain enough oxygen to permit man to live. Figure 40 illustrates by a pile of pillows how the pressure of the air varies from level to level.

Sea level is a low portion of the earth's surface, hence at sea level there is a high column of air, and a heavy air pressure. As one passes from sea level to mountain top a gradual but steady decrease in the height of the air column occurs, and hence a gradual but definite lessening of the air pressure.

FIG. - To illustrate the decrease in pressure with height.
77. Air Pressure
Air:
If an empty tube is placed upright in water, the water will not rise in the tube, but if the tube is put in water and the air is then drawn out of the tube by the mouth, the water will rise in the tube. This is what happens when we take lemonade through a straw. When the air is withdrawn from the straw by the mouth, the pressure within the straw is reduced, and the liquid is forced up the straw by the air pressure on the surface of the liquid in the glass. Even the ancient Greeks and Romans knew that water would rise in a tube when the pressure within the tube was reduced, and hence they tried to obtain water from wells in this fashion, but the water could never be raised higher than 34 feet. Let us see why water could rise 34 feet and no more. If an empty pipe is placed in a cistern of water, the water in the pipe does not rise above the level of the water in the cistern. If, however, the pressure in the tube is removed, the water in the tube will rise to a height of 34 feet approximately. If now the air pressure in the tube is restored, the water in the tube sinks again to the level of that in the cistern. The air pressing on the liquid in the cistern tends to push some liquid up the tube, but the air pressing on the water in the tube pushes downwards, and tends to keep the liquid from rising, and these two pressures balance each other. When, however, the pressure within the tube is reduced, the liquid rises because of the unbalanced pressure which acts on the water in the cistern.

The column of water which can be raised this way is approximately 34 feet, sometimes a trifle more, sometimes a trifle less. If water were twice as heavy, just half as high a column could be supported by the atmosphere. Mercury is about thirteen times as heavy as water and, therefore, the column of mercury supported by the atmosphere is about one thirteenth as high as the column of water supported by the atmosphere. This can easily be demonstrated. Fill a glass tube about a yard long with mercury, close the open end with a finger, and quickly insert the end of the inverted tube in a dish of mercury. When the finger is removed, the mercury falls somewhat, leaving an empty space in the top of the tube. If we measure the column in the tube, we find its height is about one thirteenth of 34 feet or 30 inches, exactly what we should expect. Since there is no air pressure within the tube, the atmospheric pressure on the mercury in the dish is balanced solely by the mercury within the tube, that is, by a column of mercury 30 inches high. The shortness of the mercury column as compared with that of water makes the mercury more convenient for both experimental and practical purposes.

FIG. - The water in the tube is at the same level as that in the glass.

FIG. - Water rises in the tube when the air is withdrawn.

FIG. - The air supports a column of mercury 30 inches high.
78. The Barometer
Air:
Since the pressure of the air changes from time to time, the height of the mercury will change from day to day, and hour to hour. When the air pressure is heavy, the mercury will tend to be high; when the air pressure is low, the mercury will show a shorter column; and by reading the level of the mercury one can learn the pressure of the atmosphere. If a glass tube and dish of mercury are attached to a board and the dish of mercury is inclosed in a case for protection from moisture and dirt, and further if a scale of inches or centimeters is made on the upper portion of the board, we have a mercurial barometer.

If the barometer is taken to the mountain top, the column of mercury falls gradually during the ascent, showing that as one ascends, the pressure decreases in agreement with the statement. Observations similar to these were made by Torricelli as early as the sixteenth century. Taking a barometric reading consists in measuring the height of the mercury column.

FIG. - A simple barometer.
79. A Portable Barometer
Air:
The mercury barometer is large and inconvenient to carry from place to place, and a more portable form has been devised, known as the aneroid barometer. This form of barometer is extremely sensitive; indeed, it is so delicate that it shows the slight difference between the pressure at the table top and the pressure at the floor level, whereas the mercury barometer would indicate only a much greater variation in atmospheric pressure. The aneroid barometers are frequently made no larger than a watch and can be carried conveniently in the pocket, but they get out of order easily and must be frequently readjusted. The aneroid barometer is an air-tight box whose top is made of a thin metallic disk which bends inward or outward according to the pressure of the atmosphere. If the atmospheric pressure increases, the thin disk is pushed slightly inward; if, on the other hand, the atmospheric pressure decreases, the pressure on the metallic disk decreases and the disk is not pressed so far inward. The motion of the disk is small, and it would be impossible to calculate changes in atmospheric pressure from the motion of the disk, without some mechanical device to make the slight changes in motion perceptible.

In order to magnify the slight changes in the position of the disk, the thin face is connected with a system of levers, or wheels, which multiplies the changes in motion and communicates them to a pointer which moves around a graduated circular face. In Figure 45 the real barometer is scarcely visible, being securely inclosed in a metal case for protection; the principle, however, can be understood by reference to Figure.

FIG. - Aneroid barometer.

FIG. - Principle of the aneroid barometer.
80. The Weight of the Air
Air:
We have seen that the pressure of the atmosphere at any point is due to the weight of the air column which stretches from that point far up into the sky above. This weight varies slightly from time to time and from place to place, but it is equal to about 15 pounds to the square inch as shown by actual measurement. It comes to us as a surprise sometimes that air actually has weight; for example, a mass of 12 cubic feet of air at average pressure weighs 1 pound, and the air in a large assembly hall weighs more than 1 ton.

We are practically never conscious of this really enormous pressure of the atmosphere, which is exerted over every inch of our bodies, because the pressure is exerted equally over the outside and the inside of our bodies; the cells and tissues of our bodies containing gases under atmospheric pressure. If, however, the finger is placed over the open end of a tube and the air is sucked out of the tube by the mouth, the flesh of the finger bulges into the tube because the pressure within the finger is no longer equalized by the usual atmospheric pressure.

Aėronauts have never ascended much higher than 7 miles; at that height the barometer stands at 7 inches instead of at 30 inches, and the internal pressure in cells and tissues is not balanced by an equal external pressure. The unequalized internal pressure forces the blood to the surface of the body and causes rupture of blood vessels and other physical difficulties.

FIG. - The flesh bulges out.


Test your English Language
Benefits of Cantaloupe
Weird Ghost Stories
Rules to Play Down Hill Skiing
Rules to play Racquetball
Ways to Get Happy
Xmas Games
Celebrities Who Died Under Mysterious Circumstances
Avataars of Lord Shiva
Avataars of Lord Vishnu
Awesome Gifts For Christmas