simple science

2018 Tarot Card Reading. accurate fortune teller. Free ..

Simple Science

11. Fresh Air
Fresh air is essential to normal healthy living, and 2000 cubic feet of air per hour is desirable for each individual. If a gentle breeze is blowing, a barely perceptible opening of a window will give the needed amount, even if there are no additional drafts of fresh air into the room through cracks. Most houses are so loosely constructed that fresh air enters imperceptibly in many ways, and whether we will or no, we receive some fresh air. The supply is, however, never sufficient in itself and should not be depended upon alone. At night, or at any other time when gas lights are required, the need for ventilation increases, because every gas light in a room uses up the same amount of air as four people.

In the preceding Section, we learned that many houses heated by hot water are supplied with fresh-air pipes which admit fresh air into separate rooms or into suites of rooms. In some cases the amount which enters is so great that the air in a room is changed three or four times an hour. The constant inflow of cold air and exit of warm air necessitates larger radiators and more hot water and hence more coal to heat the larger quantity of water, but the additional expense is more than compensated by the gain in health.

FIG. - The air which goes to the schoolrooms is warmed by passage over the radiators.
12. Winds and Currents
The gentlest summer breezes and the fiercest blasts of winter are produced by the unequal heating of air. We have seen that the air nearest to a stove or hot object becomes hotter than the adjacent air, that it tends to expand and is replaced and pushed upward and outward by colder, heavier air falling downward. We have learned also that the moving liquid or gas carries with it heat which it gradually gives out to surrounding bodies.

When a liquid or a gas moves away from a hot object, carrying heat with it, the process is called convection.

Convection is responsible for winds and ocean currents, for land and sea breezes, and other daily phenomena.

The Gulf Stream illustrates the transference of heat by convection. A large body of water is strongly heated at the equator, and then moves away, carrying heat with it to distant regions, such as England and Norway.

Owing to the shape of the earth and its position with respect to the sun, different portions of the earth are unequally heated. In those portions where the earth is greatly heated, the air likewise will be heated; there will be a tendency for the air to rise, and for the cold air from surrounding regions to rush in to fill its place. In this way winds are produced. There are many circumstances which modify winds and currents, and it is not always easy to explain their direction and velocity, but one very definite cause is the unequal heating of the surface of the earth.
13. Conduction
A poker used in stirring a fire becomes hot and heats the hand grasping the poker, although only the opposite end of the poker has actually been in the fire. Heat from the fire passed into the poker, traveled along it, and warmed it. When heat flows in this way from a warm part of a body to a colder part, the process is called conduction. A flatiron is heated by conduction, the heat from the warm stove passing into the cold flatiron and gradually heating it.

In convection, air and water circulate freely, carrying heat with them; in conduction, heat flows from a warm region toward a cold region, but there is no apparent motion of any kind.

Heat travels more readily through some substances than through others. All metals conduct heat well; irons placed on the fire become heated throughout and cannot be grasped with the bare hand; iron utensils are frequently made with wooden handles, because wood is a poor conductor and does not allow heat from the iron to pass through it to the hand. For the same reason a burning match may be held without discomfort until the flame almost reaches the hand.

Stoves and radiators are made of metal, because metals conduct heat readily, and as fast as heat is generated within the stove by the burning of fuel, or introduced into the radiator by the hot water, the heat is conducted through the metal and escapes into the room.

Hot-water pipes and steam pipes are usually wrapped with a non-conducting substance, or insulator, such as asbestos, in order that the heat may not escape, but shall be retained within the pipes until it reaches the radiators within the rooms.

The invention of the "Fireless Cooker" depended in part upon the principle of non-conduction. Two vessels, one inside the other, are separated by sawdust, asbestos, or other poor conducting material. Foods are heated in the usual way to the boiling point or to a high temperature, and are then placed in the inner vessel. The heat of the food cannot escape through the non-conducting material which surrounds it, and hence remains in the food and slowly cooks it.

A very interesting experiment for the testing of the efficacy of non-conductors may be easily performed. Place hot water in a metal vessel, and note by means of a thermometer the rapidity with which the water cools; then place water of the same temperature in a second metal vessel similar to the first, but surrounded by asbestos or other non-conducting material, and note the slowness with which the temperature falls.

Chemical Change, an Effect of Heat.
This effect of heat has a vital influence on our lives, because the changes which take place when food is cooked are due to it. The doughy mass which goes into the oven, comes out a light spongy loaf; the small indigestible rice grain comes out the swollen, fluffy, digestible grain. Were it not for the chemical changes brought about by heat, many of our present foods would be useless to man. Hundreds of common materials like glass, rubber, iron, aluminum, etc., are manufactured by processes which involve chemical action caused by heat.

FIG. - A fireless cooker.
14. Temperature not a Measure of the Amount of Heat Present
Temperature and Heat:
If two similar basins containing unequal quantities of water are placed in the sunshine on a summer day, the smaller quantity of water will become quite warm in a short period of time, while the larger quantity will become only lukewarm. Both vessels receive the same amount of heat from the sun, but in one case the heat is utilized in heating to a high temperature a small quantity of water, while in the second case the heat is utilized in warming to a lower degree a larger quantity of water. Equal amounts of heat do not necessarily produce equivalent temperatures, and equal temperatures do not necessarily indicate equal amounts of heat. It takes more heat to raise a gallon of water to the boiling point than it does to raise a pint of water to the boiling point, but a thermometer would register the same temperature in the two cases. The temperature of boiling water is 100 C. whether there is a pint of it or a gallon. Temperature is independent of the quantity of matter present; but the amount of heat contained in a substance at any temperature is not independent of quantity, being greater in the larger quantity.
15. The Unit of Heat
Temperature and Heat:
It is necessary to have a unit of heat just as we have a unit of length, or a unit of mass, or a unit of time. One unit of heat is called a calorie, and is the amount of heat which will change the temperature of 1 gram of water 1 C. It is the amount of heat given out by 1 gram of water when its temperature falls 1 C., or the amount of heat absorbed by 1 gram of water when its temperature rises 1 C. If 400 grams of water are heated from 0 to 5 C., the amount of heat which has entered the water is equivalent to 5 400 or 2000 calories; if 200 grams of water cool from 25 to 20 C., the heat given out by the water is equivalent to 5 200 or 1000 calories.
16. Some Substances Heat more readily than Others
Temperature and Heat:
If two equal quantities of water at the same temperature are exposed to the sun for the same length of time, their final temperatures will be the same. If, however, equal quantities of different substances are exposed, the temperatures resulting from the heating will not necessarily be the same. If a basin containing 1 lb. of mercury is put on the fire, side by side with a basin containing an equal quantity of water, the temperatures of the two substances will vary greatly at the end of a short time. The mercury will have a far higher temperature than the water, in spite of the fact that the amount of mercury is as great as the amount of water and that the heat received from the fire has been the same in each case. Mercury is not so difficult to heat as water; less heat being required to raise its temperature 1 than is required to raise the temperature of an equal quantity of water 1. In fact, mercury is 30 times as easy to heat as water, and it requires only one thirtieth as much fire to heat a given quantity of mercury 1 as to heat the same quantity of water 1.
17. Specific Heat
Temperature and Heat:
We know that different substances are differently affected by heat. Some substances, like water, change their temperature slowly when heated; others, like mercury, change their temperature very rapidly when heated. The number of calories needed by 1 gram of a substance in order that its temperature may be increased 1 C. is called the specific heat of a substance; or, specific heat is the number of calories given out by 1 gram of a substance when its temperature falls 1 C. For experiments on the determination of specific heat, see Laboratory Manual.

Water has the highest specific heat of any known substance except hydrogen; that is, it requires more heat to raise the temperature of water a definite number of degrees than it does to raise the temperature of an equal amount of any other substance the same number of degrees. Practically this same thing can be stated in another way: Water in cooling gives out more heat than any other substance in cooling through the same number of degrees. For this reason water is used in foot warmers and in hot-water bags. If a copper lid were used as a foot warmer, it would give the feet only.095 as much heat as an equal weight of water; a lead weight only.031 as much heat as water. Flatirons are made of iron because of the relatively high specific heat of iron. The flatiron heats slowly and cools slowly, and, because of its high specific heat, not only supplies the laundress with considerable heat, but eliminates for her the frequent changing of the flatiron.
18. Water and Weather
Temperature and Heat:
About four times as much heat is required to heat a given quantity of water one degree as to heat an equal quantity of earth. In summer, when the rocks and the sand along the shore are burning hot, the ocean and lakes are pleasantly cool, although the amount of heat present in the water is as great as that present in the earth. In winter, long after the rocks and sand have given out their heat and have become cold, the water continues to give out the vast store of heat accumulated during the summer. This explains why lands situated on or near large bodies of water usually have less variation in temperature than inland regions. In the summer the water cools the region; in the winter, on the contrary, the water heats the region, and hence extremes of temperature are practically unknown.
19. Sources of Heat
Temperature and Heat:
Most of the heat which we enjoy and use we owe to the sun. The wood which blazes on the hearth, the coal which glows in the furnace, and the oil which burns in the stove owe their existence to the sun.

Without the warmth of the sun seeds could not sprout and develop into the mighty trees which yield firewood. Even coal, which lies buried thousands of feet below the earth's surface, owes its existence in part to the sun. Coal is simply buried vegetation, - vegetation which sprouted and grew under the influence of the sun's warm rays. Ages ago trees and bushes grew "thick and fast," and the ground was always covered with a deep layer of decaying vegetable matter. In time some of this vast supply sank into the moist soil and became covered with mud. Then rock formed, and the rock pressed down upon the sunken vegetation. The constant pressure, the moisture in the ground, and heat affected the underground vegetable mass, and slowly changed it into coal.

The buried forest and thickets were not all changed into coal. Some were changed into oil and gas. Decaying animal matter was often mixed with the vegetable mass. When the mingled animal and vegetable matter sank into moist earth and came under the influence of pressure, it was slowly changed into oil and gas.

The heat of our bodies comes from the foods which we eat. Fruits, grain, etc., could not grow without the warmth and the light of the sun. The animals which supply our meats likewise depend upon the sun for light and warmth.

The sun, therefore, is the great source of heat; whether it is the heat which comes directly from the sun and warms the atmosphere, or the heat which comes from burning coal, wood, and oil.
20. Boiling
Other Facts about Heat:
Heat absorbed in Boiling. If a kettle of water is placed above a flame, the temperature of the water gradually increases, and soon small bubbles form at the bottom of the kettle and begin to rise through the water. At first the bubbles do not get far in their ascent, but disappear before they reach the surface; later, as the water gets hotter and hotter, the bubbles become larger and more numerous, rise higher and higher, and finally reach the surface and pass from the water into the air; steam comes from the vessel, and the water is said to boil. The temperature at which a liquid boils is called the boiling point.

While the water is heating, the temperature steadily rises, but as soon as the water begins to boil the thermometer reading becomes stationary and does not change, no matter how hard the water boils and in spite of the fact that heat from the flame is constantly passing into the water.

If the flame is removed from the boiling water for but a second, the boiling ceases; if the flame is replaced, the boiling begins again immediately. Unless heat is constantly supplied, water at the boiling point cannot be transformed into steam.

The number of calories which must be supplied to 1 gram of water at the boiling point in order to change it into steam at the same temperature is called the heat of vaporization; it is the heat necessary to change 1 gram of water at the boiling point into steam of the same temperature.

Test your English Language
Top Cricket Umpires in the world
Tips to get ready for School
Movie Oddities That Make No Sense
Greatest Leaders in World
Valentines Day Class Room Party Ideas
Benefits of Peaches
Terrifying Rulers of The Underworld
Awesome Literary T Shirts
Awesome Looking White Animals
Awesome Mental Health Resources