simple science

Simple Science

181. Methods of pumping
Pumps and their Value to Man:
"As difficult as for water to run up a hill!" Is there any one who has not heard this saying? And yet most of us accept as a matter of course the stream which gushes from our faucet, or give no thought to the ingenuity which devised a means of forcing water upward through pipes. Despite the fact that water flows naturally down hill, and not up, we find it available in our homes and office buildings, in some of which it ascends to the fiftieth floor; and we see great streams of it directed upon the tops of burning buildings by firemen in the streets below.

In the country, where there are no great central pumping stations, water for the daily need must be raised from wells, and the supply of each household is dependent upon the labor and foresight of its members. The water may be brought to the surface either by laboriously raising it, bucket by bucket, or by the less arduous method of pumping. These are the only means possible; even the windmill does not eliminate the necessity for the pump, but merely replaces the energy used by man in working it.

In some parts of our country we have oil beds or wells. But if this underground oil is to be of service to man, it must be brought to the surface, and this is accomplished, as in the case of water, by the use of pumps.

An old tin can or a sponge may serve to bale out water from a leaking rowboat, but such a crude device would be absurd if employed on our huge vessels of war and commerce. Here a rent in the ship's side would mean inevitable loss were it not possible to rid the ship of the inflowing water by the action of strong pumps.

Another and very different use to which pumps are put is seen in the compression of gases. Air is forced into the tires of bicycles and automobiles until they become sufficiently inflated to insure comfort in riding. Some present-day systems of artificial refrigeration could not exist without the aid of compressed gases.

Compressed air has played a very important role in mining, being sent into poorly ventilated mines to improve the condition of the air, and to supply to the miners the oxygen necessary for respiration. Divers and men who work under water carry on their backs a tank of compressed air, and take from it, at will, the amount required.

There are many forms of pumps, and they serve widely different purposes, being essential to the operation of many industrial undertakings. In the following Sections some of these forms will be studied.

FIG. - Carrying water home from the spring.
182. The Air as Man's Servant
Pumps and their Value to Man:
Long before man harnessed water for turbines, or steam for engines, he made the air serve his purpose, and by means of it raised water from hidden underground depths to the surface of the earth; likewise, by means of it, he raised to his dwelling on the hillside water from the stream in the valley below. Those who live in cities where running water is always present in the home cannot realize the hardship of the days when this "ready-made" supply did not exist, but when man laboriously carried to his dwelling, from distant spring and stream, the water necessary for the daily need.

What are the characteristics of the air which have enabled man to accomplish these feats? They are well known to us and may be briefly stated as follows: -

(1) Air has weight, and 1 cubic foot of air, at atmospheric pressure, weighs 1-1/4 ounces.

(2) The air around us presses with a force of about 15 pounds upon every square inch of surface that it touches.

(3) Air is elastic; it can be compressed, as in the balloon or bicycle tire, but it expands immediately when pressure is reduced. As it expands and occupies more space, its pressure falls and it exerts less force against the matter with which it comes in contact. If, for example, 1 cubic foot of air is allowed to expand and occupy 2 cubic feet of space, the pressure which it exerts is reduced one half. When air is compressed, its pressure increases, and it exerts a greater force against the matter with which it comes in contact. If 2 cubic feet of air are compressed to 1 cubic foot, the pressure of the compressed air is doubled.
183. The Common Pump or Lifting Pump
Pumps and their Value to Man:
Place a tube containing a close-fitting piston in a vessel of water, as shown in Figure. Then raise the piston with the hand and notice that the water rises in the piston tube. The rise of water in the piston tube is similar to the raising of lemonade through a straw. The atmosphere presses with a force of 15 pounds upon every square inch of water in the large vessel, and forces some of it into the space left vacant by the retreating piston. The common pump works in a similar manner. It consists of a piston or plunger which moves back and forth in an air-tight cylinder, and contains an outward opening valve through which water and air can pass. From the bottom of the cylinder a tube runs down into the well or reservoir, and water from the well has access to the cylinder through another outward-moving valve. In practice the tube is known as the suction pipe, and its valve as the suction valve.

In order to understand the action of a pump, we will suppose that no water is in the pump, and we will pump until a stream issues from the spout. The various stages are represented diagrammatically by Figure. In (1) the entire pump is empty of water but full of air at atmospheric pressure, and both valves are closed. In (2) the plunger is being raised and is lifting the column of air that rests on it. The air and water in the inlet pipe, being thus partially relieved of downward pressure, are pushed up by the atmospheric pressure on the surface of the water in the well. When the piston moves downward as in (3), the valve in the pipe closes by its own weight, and the air in the cylinder escapes through the valve in the plunger. In (4) the piston is again rising, repeating the process of (2). In (5) the process of (3) is being repeated, but water instead of air is escaping through the valve in the plunger. In (6) the process of (2) is being repeated, but the water has reached the spout and is flowing out.

After the pump is in condition (6), motion of the plunger is followed by a more or less regular discharge of water through the spout, and the quantity of water which gushes forth depends upon the speed with which the piston is moved. A strong man giving quick strokes can produce a large flow; a child, on the other hand, is able to produce only a thin stream. Whoever pumps must exert sufficient force to lift the water from the surface of the well to the spout exit. For this reason the pump has received the name of lifting pump.

FIG. - The atmosphere pressing downward on a pushes water after the rising piston b.

FIG. Diagram of the process of pumping.
184. The Force Pump
Pumps and their Value to Man:
In the common pump, water cannot not be raised higher than the spout. In many cases it is desirable to force water considerably above the pump itself, as, for instance, in the fire hose; under such circumstances a type of pump is employed which has received the name of force pump. This differs but little from the ordinary lift pump, as a reference to Figure will show. Here both valves are placed in the cylinder, and the piston is solid, but the principle is the same as in the lifting pump.

An upward motion of the plunger allows water to enter the cylinder, and the downward motion of the plunger drives water through E. (Is this true for the lift pump as well?) Since only the downward motion of the plunger forces water through E, the discharge is intermittent and is therefore not practical for commercial purposes. In order to convert this intermittent discharge into a steady stream, an air chamber is installed near the discharge tube, as in Figure. The water forced into the air chamber by the downward-moving piston compresses the air and increases its pressure. The pressure of the confined air reacts against the water and tends to drive it out of the chamber. Hence, even when the plunger is moving upward, water is forced through the pipe because of the pressure of the compressed air. In this way a continuous flow is secured.

The height to which the water can be forced in the pipe depends upon the size and construction of the pump and upon the force with which the plunger can be moved. The larger the stream desired and the greater the height to be reached, the stronger the force needed and the more powerful the construction necessary.

The force pump gets its name from the fact that the moving piston drives or forces the water through the discharge tube.

FIG. - Force pump.

FIG. - The air chamber A insures a continuous flow of water.
185. Irrigation and Drainage
Pumps and their Value to Man:
History shows that the lifting pump has been used by man since the fourth century before Christ; for many present-day enterprises this ancient form of pump is inconvenient and impracticable, and hence it has been replaced in many cases by more modern types, such as rotary and centrifugal pumps . In these forms, rapidly rotating wheels lift the water and drive it onward into a discharge pipe, from which it issues with great force. There is neither piston nor valve in these pumps, and the quantity of water raised and the force with which it is driven through the pipes depends solely upon the size of the wheels and the speed with which they rotate.

Irrigation, or the artificial watering of land, is of the greatest importance in those parts of the world where the land is naturally too dry for farming. In the United States, approximately two fifths of the land area is so dry as to be worthless for agricultural purposes unless artificially watered. In the West, several large irrigating systems have been built by the federal government, and at present about ten million acres of land have been converted from worthless farms into fields rich in crops. Many irrigating systems use centrifugal pumps to force water over long distances and to supply it in quantities sufficient for vast agricultural needs. In many regions, the success of a farm or ranch depends upon the irrigation furnished in dry seasons, or upon man's ability to drive water from a region of abundance to a remote region of scarcity.

The draining of land is also a matter of considerable importance; swamps and marshes which were at one time considered useless have been drained and then reclaimed and converted into good farming land. The surplus water is best removed by centrifugal pumps, since sand and sticks which would clog the valves of an ordinary pump are passed along without difficulty by the rotating wheel.

FIG. - Centrifugal pump with part of the casing cut away to show the wheel.

FIG. - Agriculture made possible by irrigation.

FIG. - Rice for its growth needs periodical flooding, and irrigation often supplies the necessary water.
186. Camping Its Pleasures and its Dangers
Pumps and their Value to Man:
The allurement of a vacation camp in the heart of the woods is so great as to make many campers ignore the vital importance of securing a safe water supply. A river bank may be beautiful and teeming with diversions, but if the river is used as a source of drinking water, the results will almost always be fatal to some. The water can be boiled, it is true, but few campers are willing to forage for the additional wood needed for this apparently unnecessary requirement; then, too, boiled water does not cool readily in summer, and hence is disagreeable for drinking purposes.

The only safe course is to abandon the river as a source of drinking water, and if a spring cannot be found, to drive a well. In many regions, especially in the neighborhood of streams, water can be found ten or fifteen feet below the surface. Water taken from such a depth has filtered through a bed of soil, and is fairly safe for any purpose. Of course the deeper the well, the safer will be the water. With the use of such a pump as will be described, campers can, without grave danger, throw dish water, etc., on the ground somewhat remote from the camp; this may not injure their drinking water because the liquids will slowly seep through the ground, and as they filter downward will lose their dangerous matter. All the water which reaches the well pipes will have filtered through the soil bed and therefore will probably be safe.

But while the careless disposal of wastes may not spoil the drinking water (in the well to be described), other laws of health demand a thoughtful disposal of wastes. The malarial mosquito and the typhoid fly flourish in unhygienic quarters, and the only way to guard against their dangers is to allow them neither food nor breeding place.

The burning of garbage, the discharge of waters into cesspools, or, in temporary camps, the discharge of wastes to distant points through the agency of a cheap sewage pipe will insure safety to campers, will lessen the trials of flies and mosquitoes, and will add but little to the expense.
187. A Cheap Well for Campers
Pumps and their Value to Man:
A two-inch galvanized iron pipe with a strong, pointed end containing small perforations is driven into the ground with a sledge hammer. After it has penetrated for a few feet, another length is added and the whole is driven down, and this is repeated until water is reached. A cheap pump is then attached to the upper end of the drill pipe and serves to raise the water. During the drilling, some soil particles get into the pipe through the perforations, and these cloud the water at first; but after the pipe has once been cleaned by the upward-moving water, the supply remains clear. The flow from such a well is naturally small; first, because water is not abundant near the surface of the earth, and second, because cheap pumps are poorly constructed and cannot raise a large amount. But the supply will usually be sufficient for the needs of simple camp life, and many a small farm uses this form of well, not only for household purposes, but for watering the cattle in winter.

If the cheapness of such pumps were known, their use would be more general for temporary purposes. The cost of material need not exceed $5 for a 10-foot well, and the driving of the pipe could be made as much a part of the camping as the pitching of the tent itself. If the camping site is abandoned at the close of the vacation, the pump can be removed and kept over winter for use the following summer in another place. In this way the actual cost of the water supply can be reduced to scarcely more than $3, the removable pump being a permanent possession. In rocky or mountain regions the driven well is not practicable, because the driving point is blunted and broken by the rock and cannot pierce the rocky beds of land.

FIG. - A driven well.
188. Our Summer Vacation
Pumps and their Value to Man:
It has been asserted by some city health officials that many cases of typhoid fever in cities can be traced to the unsanitary conditions existing in summer resorts. The drinking water of most cities is now under strict supervision, while that of isolated farms, of small seaside resorts, and of scattered mountain hotels is left to the care of individual proprietors, and in only too many instances receives no attention whatever. The sewage disposal is often inadequate and badly planned, and the water becomes dangerously contaminated. A strong, healthy person, with plenty of outdoor exercise and with hygienic habits, may be able to resist the disease germs present in the poor water supply; more often the summer guests carry back with them to their winter homes the germs of disease, and these gain the upper hand under the altered conditions of city and business life. It is not too much to say that every man and woman should know the source of his summer table water and the method of sewage disposal. If the conditions are unsanitary, they cannot be remedied at once, but another resort can be found and personal danger can be avoided. Public sentiment and the loss of trade will go far in furthering an effort toward better sanitation.

In the driven well, water cannot reach the spout unless it has first filtered through the soil to the depth of the driven pipe; after such a journey it is fairly safe, unless very large quantities of sewage are present; generally speaking, such a depth of soil is able to filter satisfactorily the drainage of the limited number of people which a driven well suffices to supply.

Abundant water is rarely reached at less than 75 feet, and it would usually be impossible to drive a pipe to such a depth. When a large quantity of water is desired, strong machines drill into the ground and excavate an opening into which a wide pipe can be lowered. I recently spent a summer in the Pocono Mountains and saw such a well completed. The machine drilled to a depth of 250 feet before much water was reached and to over 300 feet before a flow was obtained sufficient to satisfy the owner. The water thus obtained was to be the sole water supply of a hotel accommodating 150 persons; the proprietor calculated that the requirements of his guests, for bath, toilet, laundry, kitchen, etc., and the domestics employed to serve them, together with the livery at their disposal, demanded a flow of 10 gallons per minute. The ground was full of rock and difficult to penetrate, and it required 6 weeks of constant work for two skilled men to drill the opening, lower the suction pipe, and install the pump, the cost being approximately $700.

The water from such a well is safe and pure except under the conditions represented in Figure 142. If sewage or slops be poured upon the ground in the neighborhood of the well, the liquid will seep through the ground and some may make its way into the pump before it has been purified by the earth. The impure liquid will thus contaminate the otherwise pure water and will render it decidedly harmful. For absolute safety the sewage discharge should be at least 75 feet from the well, and in large hotels, where there is necessarily a large quantity of sewage, the distance should be much greater. As the sewage seeps through the ground it loses its impurities, but the quantity of earth required to purify it depends upon its abundance; a small depth of soil cannot take care of an indefinite amount of sewage. Hence, the greater the number of people in a hotel, or the more abundant the sewage, the greater should be the distance between well and sewer.

By far the best way to avoid contamination is to see to it that the sewage discharges into the ground below the well; that is, to dig the well in such a location that the sewage drainage will be away from the well.

In cities and towns and large summer communities, the sewage of individual buildings drains into common tanks erected at public expense; the contents of these are discharged in turn into harbors and streams, or are otherwise disposed of at great expense, although they contain valuable substances. It has been estimated that the drainage or sewage of England alone would be worth $ 80,000,000 a year if used as fertilizer.

A few cities, such as Columbus and Cleveland, Ohio, realize the need of utilizing this source of wealth, and by chemical means deodorize their sewage and change it into substances useful for agricultural and industrial purposes. There is still a great deal to be learned on this subject, and it is possible that chemically treated sewage may be made a source of income to a community rather than an expense.

FIG. - A deep well with the piston in the water.

FIG. - Showing how drinking water can be contaminated from cesspool (c) and wash water (w).
189. Pumps which Compress Air
Pumps and their Value to Man:
The pumps considered in the preceding Sections have their widest application in agricultural districts, where by means of them water is raised to the surface of the earth or is pumped into elevated tanks. From a commercial and industrial standpoint a most important class of pump is that known as the compression type; in these, air or any other gas is compressed rather than rarefied.

Air brakes and self-opening and self-closing doors on cars are operated by means of compression pumps. The laying of bridge and pier foundations, in fact all work which must be done under water, is possible only through the agency of compression pumps. Those who have visited mines, and have gone into the heart of the underground labyrinth, know how difficult it is for fresh air to make its way to the miners. Compression pumps have eliminated this difficulty, and to-day fresh air is constantly pumped into the mines to supply the laborers there. Agricultural methods also have been modified by the compression pump. The spraying of trees, formerly done slowly and laboriously, is now a relatively simple matter.

FIG. - Spraying trees by means of a compression pump.
190. The Bicycle Pump
Pumps and their Value to Man:
The bicycle pump is the best known of all compression pumps. Here, as in other pumps of its type, the valves open inward rather than outward. When the piston is lowered, compressed air is driven through the rubber tubing, pushes open an inward-opening valve in the tire, and thus enters the tire. When the piston is raised, the lower valve closes, the upper valve is opened by atmospheric pressure, and air from outside enters the cylinder; the next stroke of the piston drives a fresh supply of air into the tire, which thus in time becomes inflated. In most cheap bicycle pumps, the piston valve is replaced by a soft piece of leather so attached to the piston that it allows air to slip around it and into the cylinder, but prevents its escape from the cylinder.

FIG. - The bicycle foot pump.